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Abstract

In this paper we discuss two problems of classical

duct acoustics: (i) wave propagation in infinite ducts

with uniform flow based on a graphical approach, and

(2) detection of mode radiation from a duct by an

external circular microphone array. In (I) we show that

the wave number vectors for a given flow Mach number

form an ellipse whose center and shape depend on the

Mach number only. We construct graphically the

upstream and downstream wave number vectors of

modes that propagate in the duct. We then show how

one can infer from this graphical approach many known
results in duct propagation such as the mode cut-off

concept, the direction of energy propagation, the angle

of the radiation lobe at peak directivity using Rice's cut-

off ratio concept, and other qualitative results. In (2)

we give the mathematics behind the experimental

detection of mode radiation from a duct by a circular

array of microphones whose axis coincides with the

engine axis. Since the external microphone array does

not introduce additional noise sources inside the engine,
as does a rotating rake of microphones positioned at the

inlet, this measurement technique may be preferable to

use of a rotating rake. The simplicity afforded by the

lack of sophisticated rotating parts is an additional

advantage over the rotating array.

Introduction

Acoustic wave propagation through a flow in an
infinite duct and sound radiation from a duct inlet are
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old problems of acoustics. Both are relevant to the

design and understanding of the noise characteristics of

ducted fan engines. Noise is generated inside the engine

by various flow related mechanisms, e.g., rotor wake-

stator interaction, and then propagates through the inlet

and exhaust ducts. Although the duct length in all

engines is finite in length, the study of acoustic wave

propagation in infinite ducts of circular or annular

shapes has been very useful to engine designers both

qualitatively and quantitatively. The basic paper on

infinite duct acoustic wave propagation is by Tyler and
Sofrin _. There are many useful results in this paper and

elsewhere on infinite duct propagation that one should

understand in order to explain some aspects of engine
noise. A real engine, however, has nonuniform flow

within the duct which complicates the problem of

acoustic wave propagation considerably 2'3. One would

then like to know what modes are generated inside and

propagated out of the inlet and the exhaust. One way of

finding modes that escape out of the duct is by using a

rotating microphone array 4. However, the rotating

microphone array produces a wake that may interact

with a fan rotor and produce additional noise. It would
be preferable if one could use a noninvasive

experimental method of detecting escaping modes in

place of a rotating microphone array.

In this paper we intend to present two results

related to the acoustic problems discussed in the above

paragraph. First, we give a graphical representation of

wave propagation in an infinite duct carrying a

uniformly moving fluid. We show that many known

results can be derived easily by this graphical method.

The method relies on construction of an ellipse in wave

number space whose shape is dependent on flow speed.

The propagating waves as well as upstream and



downstreamwavenumbervectorsarethen constructed

graphically. The direction of energy propagation, the

mode cut-off concept and the approximate radiation

angle for each mode can all be constructed graphically
also. Second, we propose a new method for

experimental detection of modes escaping from a finite

duct using an external circular array of microphones

whose axis coincides with the engine axis. We give the

theory behind mode detection here. Such an array has
been constructed at Langley Research Center and will

soon be tested in an anechoic room using a model

ducted fan engine.

Graphical Approach to Wave Propagation
in a Uniform Duct With Flow

Consider a duct of uniform circular or annular

cross section carrying a uniform flow at Mach number

M<I. The differential equation and the boundary
condition for propagation of small pressure perturbations
for the hard wall case is

a +M_a v p,_-o

_c o & Ox) (I-a)

--_---0 (on the wall) (l-b)

in which x is the axial coordinate along the duct. If

cylindrical polar coordinates (r, 0, x) are used, and if it

is assumed that a complex solution for the acoustic

pressure p' exists in the form

p/=p(r,0,x)ei_t (2)

then the complex amplitude P satisfies the equations

l -M 2) °_P + V_2P-EikM OP +k2p=o t3-a)

ax

aP =0 (on the wall) (3-b)
dr

in which k=(o/co and _2 is the two-dimensional

Laplacian in polar coordinates.

Let k.(m,n) and k,(m,n) be the axial and radial
wave numbers for the mth circumferential and nth radial

modes. Considering a circular duct of radius R now,

the solution of Eq. (I) for the mode (re,n) is

p/=A_Jm[kr(rn, n)r]ex p i[t_t-m0 -k (m,n)x] (4)

where the k,(m,n) are obtained as the roots of

J/_[lq(m,n) R] --0 (5)

numbered in consecutive order by n = 1, 2, 3 ..... Here
Jr,(o) is the Bessel function of the first kind of order m.

Let 1_2=I-M 2. Then k,(m,n) is given from Eqs. (3) and

(4) by

k [-M±_/1-[13kr(rn, n)/k] 2 ]
k,(m, n) = -_

(6)

in which m=0, 1, 2 ..... We have defined the cut-off

ratio 13,, as

k
I_m - -- (7)

i_iq(m,n)

It then follows that the mode (m,n) is propagating if
13m,> I and decaying if 13m,< I.

In preparation for the graphical approach, we write
Eq. (6) as follows

(IC! +M/1_2)2 +--:_ 1

1/134 1/[32

(8)

where kx =kJk and _=k_/k. For use later we note

that Eq. (8) can also be expressed as

kt'2+_=(l _M[l)2 (9)

Equation (8) is an ellipse in the variables (k I,k 2) with

center at (-M/13 z, 0) and with semi-major and semi-

minor axes i/132 and i/13, respectively. The ellipse

depends only on M. It intersects the kl axis at

kl---l/(l +M)>O and kl---l/(1 -M)<0. It always

intersects the _ axis at [q = ± 1. Figure 1 shows the

ellipse described by Eq. (8) for flow Mach number

M=0.8. Note that for M=0, Eq. (8) gives a circle of



- ~

unit radius in the klk 2 plane with its center at the

origin. We now use this ellipse to study some aspects

of wave propagation in a circular duct.

_i= -VP / _:IP/ %+rg (11)
i P0Cok(1 -Mk: l) PoCo(1-Mf_i)

i) Propagating and Decaying Modes: Figure 2

shows how one determines the propagating and decaying

modes. On different vertical axes, each corresponding

to a circumferential mode m, plot the solutions of Eq.

(5), i.e. k,(m,n)/k for n=l,2 ..... Draw horizontal lines
as shown in this figure for m=0. If these lines intersect

the ellipse, the mode (m,n) is a propagating mode.

Otherwise the mode is decaying. In general, we get two

values for k_ which we denote as ka+ and ka. In Fig. 2

we have shown k,+(O,3)/k and k_.(0,3)/k. Note that k,
determines the axial phase speed of the mode (m,n).

The k,+ mode is generally called the downstream mode,

but any propagating k,. mode for which k/k>l actually

moves in the negative x direction; this is the case with

ka+(0,3) on Fig. (2). The relationship of the phase speed

of the mode to the velocity of energy propagation in the
mode will be discussed below.

ii) Mode Cut-offand Energy Flow: When the cut-

off ratio 13,,, is equal to unity, _=1/1_. Since the

semi-minor axis of the ellipse in the klk 2- plane is 1/13,

the axial wave number corresponding to

_=1/13 is kl=k/k=-M/132. Figure 3 shows the

wave number vector for the cut-off condition at M=0.8.

It indicates that the k,+ wave propagates upstream. To

discover what is special about the wave number vector

at cut-off we consider the acoustic energy flux vector
for the modal solution given by Eq. (4).

in which el is the unit vector along x and _ is the

projection of f/on the cross-sectional plane of the duct.

Thus, for the single-mode complex solution given by

Eq. (4) we have

[ 1 -Mk I J PoCo(1 -Mkt) p/El +u2

Here Re[-] denotes the real part of [-]. We see from Eq.

(12) that at the cut-off condition, kl ----M[132, the axial

component of the acoustic energy flux vanishes: _g' is

normal to the wall and no energy propagates along the
duct axis.

This cut-off of axial energy flux can also be

exhibited graphically on the wave number ellipse,

although only approximately for a circular duct (the

interpretation is exact for ducts of rectangular cross-

section). For this purpose we use the large argument
approximation of the Bessel function

i 2 cos(krr_qJm)Jm(krr) = nkr---_
(13)

with qm =n/4 +mn/2 to approximate p' by

For isentropic disturbances in a uniform flow at

velocity ",) the acoustic energy flux vector can be
written as _

"_'V=(p1+Po'V"fl)(_1+ P/ 9)
2

PoC0

=(p'+poCo
PoCo (10)

In Eq. (10), fit is the acoustic panicle velocity

corresponding to p', P0 is the density of the undisturbed

flow, and /QI is the flow Mach number vector V[%.

The (primed) disturbance quantities are the actual (real)

acoustic pressure and velocity. For an acoustic field

represented in the complex form of Eq, (4) the

linearized equation of linear momentum gives

--_ {expi[cot -mO -k.x -k_r- *m ] +

expi[o_t -too -kx +krr + *m]} (14)

We see that, for sufficiently large k_r at any fixed 0, p'

can be considered to be the sum of two progressing
waves in (x,r) whose phases are

4_ = ot - k,x ; krr = k(c0t - f_tx ; k2r) (15)

The unit vectors normal to these planar phase surfaces

are fi = -vO,/IvO, I, or

_, - - (]6)

_ 1 -M_ l

3



wherewehaveusedEq.(9). Nowif weinvertEq.(16)

to expressthewavenumbervectork, =(f¢,,±_) in

terms of fi_, we obtain

_-- (17)
k, =fiJ(1 +lVl.fi)

if we use Eq. (17) in Eq. (15) we find

kfi .?
d_ =cot

1 +lfl .fi,

(18)

where f is the position vector (x,r) in the plane of

constant 0. The phases in Eq. (18) are precisely those

of a pure plane wave propagating in the directions fi, in

the (x,r) plane. The phase speeds of these waves are,

from Eq. (18), Co(1 +lVl.fi ).

If the approximation is viewed locally and

variations in the geometric factor r -u2 are ignored, then

Eq. (14) implies that at points sufficiently close to the
duct wall at least the higher order n modes can be

interpreted as being a sum of two interfering plane

waves propaghting in the directions fi,. For each of

these separately the relation fi/=p//poc 0 holds so that

the energy flux associated with each is given from Eq.

(10) by

"v_/= P/2 (1 +IVl "fi) (Coil +'_ ) (19)
2

poCo

The last factor in Eq. (19) is the energy propagation

velocity, or the group velocity X_o , of the plane wave:

90 :Co_ +9 :Co(a +lfl) (2o)

and it is this quantity associated with the approximate

plane wave representation of the duct modes that is

convenient to consider in conjunction with the wave

number ellipse.

lfwe again refer to Fig. (3), we see that at cut-off

the component of _'o in the x direction is

x_o. _l =c0(_cos0¢ +M) =c0(_M +M) = 0 (21)

Here we have used the fact that, as seen from Fig. 3,

tan 0c=13/M and thus cos 0c=M, where 0, is the angle

that k at the cut-off condition makes with the kl"axis-

Equation (21) means that the acoustic energy flux vector

is normal to the wall and no energy is propagated along
the axis.

To find the direction of group velocity in our

graphical construction follow the vector diagram of Fig.

4. This diagram is in the k 1ka plane so that 1_I must be

scaled up to lVl/132 to get the direction of the group

velocity as shown in this plane. From the figure, it is
clear that at the cut-off condition the group velocity

points upward, and thus the energy flux vector is normal
to the wall.

iii) The Angle Of The Main Lobe Of Radiation
From An Inlet: Rice, Heidmann and Sofrin 6 have

proposed a rule for finding the angle of the main lobe
of radiation from an inlet where the duct Mach number

is M and the inflow Mach number (flight speed) is M®.

By our graphical method we can give a simple
interpretation of their rule as follows. Intuitively, it is

obvious that the phase velocity of a radiating mode at
the inlet should be based on M, the duct flow Mach

number. But the angle of the main lobe of radiation is

in the direction of the group velocity using 1_1 instead

of IVl in Fig. 4. Figure 5 shows this construction. Here

0' is the sought angle. The mathematical reasoning is

as follows. Remembering that kl<0, we have, from

Fig. 5:

tanO/= _ _ 13 (22)

k:' +M-/132 I(M -M) _m_ - _- 11

where 13,,, is the cut-off ratio. This is equivalent to the

expression that Rice, et.al. 6, gave for cos 0'.

iv) Other Results: One can easily show graphically

some other known results. One is the following: if a

mode (m,n) propagates for M=M, then it will propagate

for duct Mach number M2>M t. The proof is simple.

From Fig. 6 the semi-minor axis of the ellipse for M 2is

2 E'. 2

<1_ =_/1 -M1 Therefore,1/132, where 132=,/.-M 2 !

1/132>1/f3_ = semi-minor axis of the ellipse for M_.
Hence, a horizonal line that intersects the ellipse for

M=M_ necessarily intersects the ellipse for M=M:. See

Fig. (6).
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Anotherresultis thatasM---_!all modeswill
propagate.Againthegraphicalproofisverysimple.
As M--_,l,13-_0and the equationof the ellipse
degeneratesintotheparabola

=1- 2 k:t (23)

p/= expi[aB (fit- 0)] Z]_A_J= ['kr (m,n)r ] x
n q

expl -i[qV0 + k,(m,n)x] } (25)

The axis of this parabola is the [q-axis and the parabola

intersects the kl-axis at kl = 1/2. The parabola extends

to infinity in the k2 direction so that any horizontal line

intersects it. See Fig. 7. This means, by our graphical
method of discovering propagating modes, that all

modes propagate.

We mention here that the ellipse of Fig. I remains

unchanged for 2-dimensional, 3-dimensionalrectangular,

and annular ducts. Only the values of _ for the modes,

which depend on the duct geometry, will change.

Detection of Mode Radiation From a Duct

by an External Microphone Array

In this section we describe the mathematics of

mode detection by use of a circular microphone array.

The axis of this array coincides with engine axis. We

consider a static engine here (M=0). We assume that

we can approximate the radiation from the inlet by the

Rayleigh formula

O fe [P°u]r'tdS4 TtP/(X't) =-& i , t5,
(24)

where U is the axial acoustic particle velocity at the

inlet, and I5, is the radiation distance from points in the

inlet plane. We will concentrate on a frequency of

t_ ×BPF=t_Bt'), where B is the number of fan blades

and f2 is the angular velocity of the fan. Let us assume
that we have V vanes, or a circumferentially periodic

disturbance of period 2rt/V radians. We know that we

generate circumferential modes m=aB+qV where

q= ± 1,±2 ...... Let n be the radial mode number
index of the acoustic waves that propagate and radiate

out of the inlet. The acoustic pressure in the duct for

frequency ctBf) is

Note that m is a function of q in Eq. (25).

The relation between u and p' for frequency aB_

is:

U-

I
expi [_B(Qt - 0)] x

aBGp o

E ZA_ k. (m,n) J= [lq (m,n) rI x
n q

exp {-i[qV0 +ka(m,n)x]} (26)

Now let us assume that the origin of the cylindrical

polar coordinates is at x=0. Then

1
u(r, 0,0) = -- expi [ct B(flt - 0)] x

aBQgo

E E A mk. (m, n) lm [kr (m, n) r] e-iqv°
n q

(27)

Let a microphone on a circular array of radius a from

the x axis have cylindrical polar coordinates (a,0/,x).

From a point on the inlet with coordinates (r,0), the
radiation distance is

R _-Ro-r sin_ cos(0-0 t) (28)

where Ro=vr_+x 2 is the distance of the microphone

from the center of the inlet and sin_ =a/R o, i.e. _ is

the angle that the microphone makes with the engine

axis. We are assuming that ro/Ro<<i, where ro is the
inlet radius.



UsingEq.(27)inEq.(24),weget

r0 2'_

4 n p/(a,0/,x,t) = irt expi {aB [f2 (t - R°) - 0q} _EA.qk.(m.n)e-iqv°'f f Jm[l_(m.nlr] x
P0 C n q 0 0

expi{- (aB + qV)(0- 01) + aBGr c°s(0 - 0/)sinO } rdrd0Co

Po c ) JJ o qA_q J, L Co J

(29)

where D(0') is a periodic function of 0' with first

harmonic 2n /V.

From Eq. (29), we see that since

D(0/) =EDqe -tqv°'
q

(30)

a complex Fourier transform of D(0'), which is obtained

by microphone measurement, will give all q's (positive
and negative integers) and therefore all circumferential

modes for a xBPF. Once all the q's are found, then

we can numerically compute

I o

C(m,n, qJ) =frJm[kr(m,n)]Jm(aB_rsint_/dr (31)
o / c0 )

From Eq. (26), for a fixed q, we have

Dq = Eka (m,n) C (m,n, _ )A
Ill

(32)

Using N positions of the microphone array, we can find

N propagating radial modes corresponding to the

circumferential mode m=aB+qV. We propose to use

singular value decomposition in order to invert Eq. (32)

to find A.q. Extension to the case of a moving engine
is similar and straightforward.

Recently it has come to the authors' attention that

B. J. Tester, et. al. 7, have described a similar method for

mode detection based on pressure cross-spectrum versus

separation in polar angle. The authors are now studying

the possibility that the method of Ref. 7 can be
combined with that of the current paper.

I.
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ql, 41D

p2

_2

1D_IE__ _ k2 = kr (m'n)/k

1_ _(1 DOWwn:tr:am

M=0.8

Fig. - The ellipse of wave number vector described by Eq. (8);

kl --ka/k, k2 --kr/k. Corresponding to each propagating wave with a given

k2, two axial wave numbers kl÷ and _'1- are obtained.

Upstream

Decaying mode
k2 m=0, 1, 2

I I

I I
I I

!
I I

k1_(0,3) k1+(0,3)
M =0.8

(2,3)

(2,2)

(2,1)

(0,0)

* Propagating

X Decaying

Fig. 2. - Determination of propagating and decaying waves. Each vertical line on

the right corresponds to one circumferential mode.



kl

Upstream _ _ M 0

K1 -- --_" M = 0.8

Fig. 3. - The wave number vector at cut-off

_2

_ Direction of
group velocity

kl

Fig. 4. - The diagram for finding the direction of group velocity in the kl k2"plane-

Upstream

k2

M=0.8

_(1

Fig. 5. - The diagram for construction of 0', the angle of the main radiation lobe

from an inlet, as proposed by Rice, Heidmann and Sofrin 5. The ellipse is

based on the duct Mach number and the flight Mach number is M®.
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Fig. 6. - The ellipsesfor M=0.6 and M=0.7. Mode(m,n) propagatesfor M=0.6.
Thereforeit propagatesfor M>0.6.

2

I
-2

k2(m,n)

I

/ Parabola

Fig. 7. - The degenerate ellipse (a parabola) as M--_I. Note that as k]- -oo, we

have k2 _ ± oo. Any horizontal line intersects the parabola, i.e., all modes

propagate.








